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Abstract

The novel lithium complexes [Li{N(SiMe;)C(Ph)C(RXC;H,N-2)}], (R=H or SiMe;) and Li{N(SiMe;)C(Ph)C(RXC H¢N-2)}
(R = H or SiMe,), prepared from PhCN and [Li{C(SiMe,RXCsH,N-2)}], or L{C(SiMe; X RXCgHgN-2)}, react with ZrCl, to afford
racemic complexes [Zr{N(SiMe,)C(Ph)C(RXC;H ,N-2)},Cl,] (R=H or SiMe;, 3b) and [Zr{N(SiMe,)C(Ph)C(RXC4HN-2)},Cl,],
respectively. Conproportionation of ZrCl, and 3b or d4b afforded [Zr{N(SiMe,)C(Ph)C(SiMe;}CsH ,N-2)}Cl;] and
[Zr{N(SiMe,)C(Ph)C(SiMe s XCyH¢N-2)}Cl;], respectively. The compounds are characterised by NMR spectroscopy and X-ray data are

provided for 3b.
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1. Introduction

The search for good alternatives for cyclopentadi-
enyl-type spectator ligands in Group 4 organometallic
chemistry has led to the application of polydentate
ligands like Schiff bases [1], benzamidinates [2], multi-
dentate amides [3], macrocyclic nitrogen ligands [4],
porphyrins and porphyrinogens [5], biphenoxide and
binaphthoxide [6] ligands. Despite the numerous new
ligands available, relatively few derived complexes have
had catalytic activity. Recently we have shown that the
new bidentate B-diketiminate ligands [LL]™ I [7] and
[LL']™ II [8] have some 1°-character and are at least as
bulky as the most highly substituted cyclopentadienyls,
as exemplified by the existence of the mononuclear
complexes [Z(LL')Cl;] [8], [Yb(LL),] [9] and
[L (LL),CI] [10]; some of the zirconium complexes
were found to be olefin polymerisation catalysts [11].
Because of their different electronic and steric proper-
ties compared with cyclopentadienyls, B-diketiminate-
type ligands might have considerable potential as spec-
tator ligands especially in the area of catalysis. We now
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report on novel monoanionic bidentate 2-pyridyl- and
2-quinolyl-substituted 1-aza-allyl ligands, their lithium
complexes 1 and 2, and their racemic zirconium deriva-
tives 3, 4, 8, and 9.

2. Results and discussion

The complexes [Li{N(SiMe,)C(Ph)C(RXCsH ,N-
2)}1, (R =H 1a or SiMe, 1b) or Li{N(SiMe,)C(Ph)C-
(RXCyH(N-2)} (R = H 2a or SiMe, 2b), were prepared
under mild conditions from PhCN and [Li{C(SiMe,)-
(RXCH,N-2)}], [12] (Scheme 1) or Li{C(SiMe,XR)-
(CyH(N-2)} 5 (Scheme 2). The lithium derivatives 1
and 2 with ZrCl, under ambient conditions in Et,O or
THF gave the bis(ligand)zirconium dichloride com-
plexes 3 and 4. All of the eight compounds were
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"Scheme 1. Reagents and conditions (ca. 25°C, unless otherwise stated): (i) 2 PhCN, Et,0/n-C4H,,, 24 b; (i) ZrCl,, THF, 24 h, reflux 1.5 h;

(iii) ZrCl,, Et,0, 24 h.

prepared in multigram quantities and gave satisfactory
NMR (‘H, °C) [13] and MS data as well as good
microanalytical results; X-ray data are available for two
of the key compounds, 1b and 3b, but these are reported
here only for 3b. Compounds 3 and 4 were only
sparingly soluble in alkanes or Et,O but had good
solubilities in THF, benzene, toluene or dichlorometh-
ane.

The lithiomethylquinoline compounds 5 were ob-
tained from single and double silylation of 2-methyl-
quinoline by LiBu"/SiMe;Cl followed by metalation

with LiBu". In the full paper we shall also report on
inter alia (a) reactions analogous to (i) and (ii) (R = H)
in Scheme 1, wherein [Li{HC(SiMe, X CsH ,N-2)}], was
treated with Bu'CN yielding [Li{N(SiMe,)C(Bu')-
C(HXCH,N-2)}], 6, which in turn with ZrCl, gave
[Zr{N(SiMe,)C(Bu" )C(HXC,H,N-2)},C1,] 7, and (b)
the X-ray structure of 6.

Based on NMR spectral data complexes 3 and 4b are
assigned as having either C, or Cy symmetry in solu-
tion to account for the equivalent NCCCN ligands. The
higher substituted derivative 3b showed two sets of
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Scheme 2. Reagents and conditions (ca. 25°C): (i) PhCN, Et,0/n-C¢H ,, 24 h; (ii) n/2 ZrCl,, Et,0, 24 h.
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resonances for the ortho protons of the phenyl groups
(8 7.68 and 7.63, intensity ratio=1:1) and 2 CSiMe,
(8 118.6 and 118.3) resonances. This is attributed to
two different puckering modes of the highly substituted
ZrINCCCN metallacycles (vide infra). In contrast to
compounds 3 and 4b, 4a displayed two complete sets of
ligand resonances ('H and '*C NMR) suggesting a
lower symmetry of the complex [14]. It should be noted
that no other isomers were observed in the NMR spectra
of purified 3 and 4.

To elucidate the molecular structure of complexes 3,
an X-ray crystal structure determination was carried out
on 3b [15]. In full agreement with the NMR spectral
data the bonding geometry around zirconium is dis-
torted octahedral with the zirconium centre situated on a
crystallographic C, axis (Fig. 1). The best equatorial
plane is defined by ZrN(1)N(1)* N(2)C1 ( 3 Zr = 358.4°)
with CI* and N(2)* in trans-apical positions. As in
zirconocene chlorides, the chlorine atoms are cis which
is a highly desirable situation from a catalytic point of
view. Both the Zr—Cl (2.434(1) A) distances and the
Cl-Zr~C1* angle (95.06(7)°) are comparable with the
corresponding  values in four-coordinate zirconocene
dichlorides (2.43-2.46 A and 94-98°, respectively) [16].
The Cl-Zr-CI* plane is torsioned relative to the N2—
Zr-N(2)* plane by 16°. The bonding within the chelat-
ing NCCCN skeletons is highly localized with Zr—N(1)
and C(2)-C(3) single and C(1)-C(2) double bonds. The
pyridyl ring distances are regularly aromatic and Zr-
N(2) is a dative o-bond although the Zr atom is signifi-
cantly displaced from the pyridyl plane (C(4)-C(3)-

N(2)-Zr = —165.4(3)°). The Zr-N(1) distance (2.141(3)
A) is comparable with the Zr-N covalent bond in the
amido complex [Zr(n-CsH,),(CI{N(H)SiMe,Bu")}]
(2.139(3) A) [17] and close to the Zr-N values in
[Zt(LL)C1,1(2.138(5) and 2.187(5) A) [8]. The Zr-N(2)
distance (2.354(3) A) is slightly longer than the dative
Zr-N interactions in Schiff basez complexes [Zr(CH,-
CMe,),(F-acen),] I (2.33(4) A) [1a], [ZrL2C!,2] v
(L =a norephedrine-derived ligand, 2.317(5) A and
2.328(6) A) [lc), and [Zr{msal),Cl,] V (2.317(5)-
2.34(1) A, msal = N-methylsalicylideneiminate) [1b].
This also indicates that N(2)-Zr 7-d interactions are
unimportant. The ZTNCCCN metallacycles are highly
puckered most likely due to steric interactions between
Ph and SiMe, substituents. In contrast to [Z{(LL)Cl,]
[8], there is no m°-7-interaction with the bidentate
nitrogen ligands in 3b.

Complex 3b is structurally similar to Schiff base
complexes IV (Cl-Zr-Cl = 93.7(1)°) [Ic], V (Cl-Zr-
Cl=96.9(1)°) and 98.8(1)°) [1b] and benzamidinate
[M{N(SiMe,)C(Ph)N(SiMe)},Cl,] (M =Ti, Zr; Cl-
Ti-Cl = 98.6(1)°) [2¢] in which the Cl atoms are also
cis-positioned in distorted octahedral environments. On
the basis of the close analogy in the NMR spectral data,
we favour similar C, symmetrical distorted octahedral
sttuctures for 3a and 4b. The inequivalence of the
nitrogen ligands in 4a might be explained by an unsym-
metrical (C,) structure depicted in Scheme 2, although
the reason for this deviation is not clear.

Mono(aza-allyl)zirconium trichloride complexes 8
and 9 were obtained by conproportionation of ZrCl,

Fig. 1. The X-ray structure and atom labelling scheme for [Zr{N(SiMe;)C(Ph)C(SiMe;XCsH ,N-2)},Cl,] 3b. Selected bond lengths (A) and
angles (°): Zr-N(1) 2.141(3), Zr-N(2) 2.354(3), Zr-Cl 2.434(1), N(1)-C(1) 1.397(5), N(2)-C(3) 1.338(5), N(2)-C(7) 1.348(5), C(1)-C(2)
1.36%6), C(2)-C(3) 1.475(6), N(1)-Zr-N(1)* 165.0(2), N(2)-Zr-Cl 165.84(8), C1-Zr-C1* 95.06 (7).
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w2 CH,C
L,2rCl, + ziCl, —%"-» 2 [((LY2rcy),

8, [LL"} = [(SiMe;)NC(PhIC(SiMe,XCyH N-2)}
9, [LL'} = [(SiMe;)NC(Ph)C(SiMe,XCoHgN-2)}

and 3b or 4b, respectively, in either dichloromethane or
toluene (Eqn. (1)). Both compounds gave satisfactory
'"H NMR [18] and MS data. Com;l)ound 9 shows two
sets Qf ligand resonances in the H NMR spectrum
suggesting that it is probably a dimer in solution.

All new zirconium compounds described above were
tested on their activity in ethylene polymerisation with
methylaluminoxane (MAO) as co-catalyst. However,
neither of the complexes (3 or 4) had activity in ethy-
lene polymerisation. In contrast, both 8 and 9 show
moderate activity. We are currently further investigating
this topic.
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