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Abstract 

The novel lithium complexes [Li{N(SiMe3)C(Ph)C(R)(CsH4N-2)}] 2 (R = H or SiMe 3) and Li{N(SiMe3)C(Ph)C(R)(C9H6N-2)} 
(R = H or SiMe3), prepared from PhCN and [Li{C(SiMe3)(R)(CsH4N-2)}] 2 or Li{C(SiMe3)(RXC9H6N-2)}, react with ZrCI 4 to afford 
racemic complexes [Zr{N(SiMe3)C(Ph)C(RXCsH4N-2)}2C12] (R= H or SiMe 3, 3b) and [Zr{N(SiMe3)C(Ph)C(RXC9H6N-2)}2CI2], 
respectively. Conproportionation of ZrC14 and 3b or 4b afforded [Zr{N(SiMe3)C(Ph)C(SiMe3)(CsHaN-2)}C13] and 
[Zr{N(SiMe3)C(Ph)C(SiMe3)(C9H6N-2)}C13], respectively. The compounds are characterised by NMR spectroscopy and X-ray data are 
provided for 3b. 

Keywords: Lithium; Zirconium; Chelating amide; Aza-allyl 

1. Introduct ion 

The search for good alternatives for cyclopentadi- 
enyl-type spectator ligands in Group 4 organometallic 
chemistry has led to the application of polydentate 
ligands like Schiff bases [1], benzamidinates [2], multi- 
dentate amides [3], macrocyclic nitrogen ligands [4], 
porphyrins and porphyrinogens [5], biphenoxide and 
binaphthoxide [6] ligands. Despite the numerous new 
ligands available, relatively few derived complexes have 
had catalytic activity. Recently we have shown that the 
new bidentate /3-diketiminate ligands [LL]- I [7] and 
[LU]-  II [8] have some ~/5-character and are at least as 
bulky as the most highly substituted cyclopentadienyls, 
as exemplified b__b_z" the existence of the mononuclear 
com o_p~exes [Zr(LL')C13] [8], [ Y b ~ ) 2 l  [9] and 
[L,(LL)2CI] [10]; some of the zirconium complexes 
were found to be olefin polymerisation catalysts [11]. 
Because of their different electronic and steric proper- 
ties compared with cyclopentadienyls, fl-diketiminate- 
type ligands might have considerable potential as spec- 
tator ligands especially in the area of catalysis. We now 
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report on novel monoanionic bidentate 2-pyridyl- and 
2-quinolyl-substituted 1-aza-allyl ligands, their lithium 
complexes 1 and 2, and their racemic zirconium deriva- 
tives 3, 4, 8, and 9. 

2. Results and discussion 

The complexes [Li{N(SiMe3)C(Ph)C(R)(CsH4N- 
2)}] 2 (R = H l a  or SiMe 3 lb)  or Li{N(SiMe3)C(Ph)C- 
(R)(C9H6N-2)} (R = H 2a or SiMe 3 2b), were prepared 
under mild conditions from PhCN and [Li{C(SiMe3)- 
(R)(CsHaN-2)}] 2 [12] (Scheme 1) or Li{C(SiMe3)(R)- 
(C9H6N-2)} 5 (Scheme 2). The lithium derivatives 1 
and 2 with ZrC14 under ambient conditions in Et20 or 
THF gave the bis(ligand)zirconium dichloride com- 
plexes 3 and 4. All of the eight compounds were 

Me3Si/N N~SiMe 3 
i [LL]-  R = Ph 
!I ILL']" R = tBu 
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Scheme 1. Reagents and conditions (ca. 25°C, unless otherwise stated): (i) 2 PhCN, Et20/n-C6HI4, 24 h; (ii) ZrC14, THF, 24 h, reflux 1.5 h; 
(iii) ZrCI 4, Et20, 24 h. 

prepared in multigram quantities and gave satisfactory 
NMR (JH, 13C) [13] and MS data as well as good 
microanalytical results; X-ray data are available for two 
of the key compounds, lb  and 3b, but these are reported 
here only for 3b. Compounds 3 and 4 were only 
sparingly soluble in alkanes or Et20 but had good 
solubilities in THF, benzene, toluene or dichlorometh- 
ane.  

The lithiomethylquinoline compounds 5 were ob- 
tained from single and double silylation of 2-methyl- 
quinoline by LiBu"/SiMe3C1 followed by metalation 

with LiBu". In the full paper we shall also report on 
inter alia (a) reactions analogous to (i) and (ii) (R = H) 
in Scheme 1, wherein [Li{HC(SiMe3)(CsHnN-2)}]2 was 
treated with ButCN yielding [Li{N(SiMe3)C(But) - 
C(H)(CsH4N-2)}] 2 6, which in turn with ZrC14 gave 
[Zr{N(SiMe3)C(But)C(H)(CsHaN-2)}zCI2] 7, and (b) 
the X-ray structure of 6. 

Based on NMR spectral data complexes 3 and 4b are 
assigned as having either C 2 or C s symmetry in solu- 
tion to account for the equivalent NCCCN ligands. The 
higher substituted derivative 3b showed two sets of 

Li{C (SiMe3)(R) (C91"-IsN-2) } 
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Scheme 2. Reagents and conditions (ca. 25°C): (i) PhCN, Et20/n-C6Hj4,  24 h; (ii) n / 2  ZrC14, EtzO, 24 h. 
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resonances for the ortho protons of the phenyl groups 
(3 7.68 and 7.63, intensity ratio = 1 : 1) and 2 CSiMe 3 
(8 118.6 and 118.3) resonances. This is attributed to 
two different puckering modes of the highly substituted 
ZrNCCCN metallacycles (vide infra). In contrast to 
compounds 3 and 4b, 4a displayed two complete sets of 
ligand resonances (]H and ]3C NMR) suggesting a 
lower symmetry of the complex [14]. It should be noted 
that no other isomers were observed in the NMR spectra 
of purified 3 and 4. 

To elucidate the molecular structure of complexes 3, 
an X-ray crystal structure determination was carded out 
on 3b [15]. In full agreement with the NMR spectral 
data the bonding geometry around zirconium is dis- 
torted octahedral with the zirconium centre situated on a 
crystallographic C 2 axis (Fig. 1). The best equatorial 
plane is defined by ZrN(1)N(1) # N(2)C1 (,~Zr = 358.4 °) 
with C1 # and N(2) # in trans-apical positions. As in 
zirconocene chlorides, the chlorine atoms are cis which 
is a highly desirable situation from a catalytic point of 
view. Both the Zr-CI (2.434(1) A.) distances and the 
C1-Zr-C1 # angle (95,06(7) °) are comparable with the 
corresponding values in four-coordinate zirconocene 
dichlorides (2.43-2.46 ,~ and 94-98 °, respectively) [ 16]. 
The CI-Zr-CI # plane is torsioned relative to the N2- 
Zr-N(2) # plane by 16 °. The bonding within the chelat- 
ing NCCCN skeletons is highly localized with Zr-N(1) 
and C(2)-C(3) single and C(1)-C(2) double bonds. The 
pyridyl ring distances are regularly aromatic and Zr-  
N(2) is a dative o'-bond although the Zr atom is signifi- 
cantly displaced from the pyridyl plane (C(4)-C(3)- 

N(2)-Zr = - 165.4(3)°). The Zr-N(1) distance (2.141 (3) 
,~) is comparable with the Zr-N covalent bond in the 
amido complex [Zr07-C5Hs)2(C1){N(H)SiMe2But)}] 
(2.139(3) A) [17] and close to the Zr-N values in 
[Z'-~-L-'L')C13 ] (2.138(5) and 2.187(5) ,~) [8]. The Zr-N(2) 
distance (2.354(3) ,~) is slightly longer than the dative 
Zr -N interactions in Schiff base complexes [Zr(CH 2- 
CMe3)2(F6-acen) z] III (2.33(4) ,~) [la], [ZrL2C12] IV 
(L = a norephedrine-derived ligand, 2.317(5) A and 
2.328(6) oA) [lc], and [Zr(msal)2C12] V (2.317(5)- 
2.34(1) A, msal=N-methylsalicylideneiminate) [lb]. 
This also indicates that N(2)-Zr rr-d interactions are 
unimportant. The ZrNCCCN metallacycles are highly 
puckered most likely due to steric interactions between 
Ph and SiMe 3 substituents. In contrast to [Z'-~'-~')C13 ] 
[8], there is no rts-Tr-interaction with the bidentate 
nitrogen ligands in 3b. 

Complex 3b is structurally similar to Schiff base 
complexes IV (C1-Zr-CI = 93.7(1) °) [lc], V (CI-Zr-  
C1=96.9(1) °) and 98.8(1) °) [lb] and benzamidinate 
[M{N(SiMe3)C(Ph)N(SiMe3)}2C12] ( M = T i ,  Zr; CI- 
Ti-CI = 98.6(1) °) [2c] in which the C1 atoms are also 
cis-positioned in distorted octahedral environments. On 
the basis of the close analogy in the NMR spectral data, 
we favour similar C 2 symmetrical distorted octahedral 
structures for 3a and 4b. The inequivalence of the 
nitrogen ligands in 4a might be explained by an unsym- 
metrical (C~) structure depicted in Scheme 2, although 
the reason for this deviation is not clear. 

Mono(aza-allyl)zirconium trichloride complexes 8 
and 9 were obtained by conproportionation of ZrCI 4 
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Fig. 1. The X-ray structure and atom labelling scheme for [Zr{N(SiMe3)C(Ph)C(SiMe3XCsH4N-2)}2CI 2] 3b. Selected bond lengths (.A.) and 
angles (°): Zr -N( l )  2.141(3), Zr-N(2) 2.354(3), Zr-CI 2.434(1), N(1)-C(I)  1.397(5), N(2)-C(3) 1.338(5), N(2)-C(7) 1.348(5), C(1)-C(2) 
1.369(6), C(2)-C(3) 1.475(6), N(1)-Zr-N(I) # 165.0(2), N(2)-Zr-CI 165.84(8), CI-Zr-CI  # 95.06 (7). 
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r , C~C~ 
(LL")2ZrCI 2 + ZrCI4 

15h 2In [(1' L")2'rCI3] n 

a, [LL"]- = [(SiMea)NC(Ph)C(SiMe3XCsH4N.2) ]. 
9, [LL"]" = [(SiMea)NC(Ph)C(SiMe3XCeHeN.2) ]- 

and 3b or 4b, respectively, in either dichloromethane or 
toluene (Eqn. (1)). Both compounds gave satisfactory 
I H NMR [18] and MS data. Comt~ound 9 shows two 
sets ~f ligand resonances in the 'H NMR spectrum 
suggesting that it is probably a dimer in solution. 

All new zirconium compounds described above were 
tested on their activity in ethylene polymerisation with 
methylaluminoxane (MAO) as co-catalyst. However, 
neither of the complexes (3 or 4) had activity in ethy- 
lene polymerisation. In contrast, both 8 and 9 show 
moderate activity. We are currently further investigating 
this topic. 
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